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An algebraic theory of orthogonality for vector polynomials with respect to a
matrix of linear forms is presented including recurrence relations, extension of the
Shohat�Favard theorem, of the Christoffel�Darboux formula, and its converse. The
connection with orthogonal matrix polynomials is described. � 1997 Academic Press

1. INTRODUCTION

Classical orthogonal polynomials and matrix polynomials orthogonal
with respect to some Hermitian positive matrix of measures satisfy several
algebraic properties, for example, recurrence relations. Matrix orthogonality
has already been studied by several authors. In [6] a part of our study,
considering polynomials with matrix coefficients, is made in the case of
square Hermitian matrices and a more precise reference to their work is
given at the end. The work in [5] is also concerned with this problem but
from another point of view; the difference is obvious on the matrix called
here A (xH=AH formula (15)) which is a Hessenberg matrix in their
framework and which is a banded matrix here. This problem was partly
investigated in [11]. This study started in [1], with other aims and nota-
tion, linked with previous work [7, 8].

This paper deals with algebraic aspects of matrix orthogonality. In par-
ticular we want to show how the structure of orthogonal polynomials with
respect to a p_q matrix of arbitrary linear forms is a canonical one. The
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scalar case is recovered if the matrix is of size 1 ( p=q=1) in the sense
defined in [2], sometimes called formal orthogonality. The vector case, i.e.,
q=1, as defined in [12, 13], is also recovered, and as in this last case, only
approximation with ``regular degree'' is considered (section 2).

Algebraic properties such as recurrence relations, a generalization of the
Shohat�Favard theorem, and a Christoffel�Darboux formula, are studied
in the case of orthogonality with respect to an abstract matrix of measures
known by their moments. As in the scalar case the moments can also be
considered as given by the coefficients of power series, here this means the
coefficients of a p_q matrix 3 of ordinary scalar power series with real or
complex coefficients. The link with the Hermite-Pade� point of view will be
given, i.e., the simultaneous approximation of a matrix of functions.

The orthogonality is defined as right-orthogonality of a family of vector
polynomials H (n)=(H (n)

1 , ..., H (n)
q )t through 3(H (n)x&)=0, &=.. . . By

simple transposition this gives rise to left-orthogonality with respect to 3*.
If (H (n))n�0 are the right-orthogonal polynomials and (E (m))m�0 the left-
orthogonal polynomials with respect to 3, the Shohat�Favard theorem will
be presented in Section 7 in terms of the orthogonal family (H (n))n�0, and
in terms of the biorthogonal family (H (n), E (m))n, m .

A kind of Christoffel�Darboux formula will be given in Section 8. As in
the scalar case ([3]), a converse result is proved, i.e., this identity charac-
terizes the matrix orthogonality through the recurrence relations.

One question is to define orthogonal polynomials with respect to a
matrix of linear forms as matrix polynomials or vector polynomials. The
choice which is done here is to define vector polynomials, but some
remarks are given at the end concerning this point which show that under
some restrictions on the order (see Section 2) of the vector polynomials,
these two points of view are equivalent. Moreover vector orthogonal poly-
nomials and square matrix polynomials are then two extreme cases of only
one theory. The basic idea would be that a matrix of polynomials is a set
of vector polynomials which are orthogonal. Through the recurrence rela-
tion satisfied by the orthogonal polynomials of each kind, this idea is made
clear in Section 9.

2. THE MATRIX HERMITE�PADE� PROBLEM

Let p and q be any fixed natural numbers, F(z) is a p_q matrix of
functions

fk, j (z)= :
�

&=0

f &
k, j

z&+1 , k=1, ..., p, j=1, ..., q,
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each function being a formal power series with complex coefficients. Fix
two multi-indices m� =(m1 , ..., mq) and n� =(n1 , ..., np) of order |m� |=
m1+ } } } +mq and |n� |=n1+ } } } +np which satisfy |m� |=|n� |+1.

The following problem is now considered as the Hermite�Pade� problem
at infinity. We look for scalar polynomials H1 , ..., Hq , not simultaneously
zero, of degree not greater than respectively m1&1, ..., mq&1 and such that
for some polynomials Ki , i=1, ..., p the following relations are satisfied

R1=H1 f1, 1+ } } } +Hq f1, q&K1=O(1�zn1+1)

{ b (1)

Rp=H1 fp, 1+ } } } +Hq fp, q&Kp=O(1�znp+1).

There always exists non trivial solutions because the problem reduces to
solving a linear system of |n� | equations for |m� |=|n� |+1 unknowns (the
coefficients of the polynomials Hk , k=1, ..., q). The polynomials K1 , ..., Kp

are defined automatically as the polynomial part of the series H1 fi, 1+
} } } +Hq fi, q , i=1, ..., p; if some negative degree occurs for a polynomial,
then the polynomial is zero. In general, the solution is not unique, even up
to the multiplication by constants. The problem can, equivalently, be con-
sidered in a neighbourhood of zero. In that case a recursive algorithm for
solving (1) can be found in [8] where no regularity assumptions are
required.

If p=1, the problem is the Hermite�Pade� approximation of the first
kind, if q=1 it is the Hermite�Pade� problem of the second kind, also called
vector Pade� approximation [13].

The problem (1) can be rewritten in matrix form with H=(H1 , ..., Hq)t

(for i=1, ..., q, deg Hi�mi&1) and K=(K1 , ..., Kp)t

R(z)=F(z) H(z)&K(z)=O(1�zn� +1), deg H�m� , |m� |=|n� |+1 (2)

where F=( fk, j), k=1, ..., p, j=1, ..., q, R, K, H are column matrices of
power series or polynomials, of size p for R and K, q for H, and the
O(1�zn� +1) being understood as in (1).

3. REGULAR MULTI�INDICES AND
WEAKLY PERFECT SYSTEMS

In the following we will restrict ourselves to regular multi-indices n� ([10]).

Definition 1. A multi-index k� =(k1 , ..., kd) # Zd is regular if

k1�k2� } } } �kd�k1&1
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Regular multi-indices are uniquely defined by their order, if n is the
order and n=&d+k, k<d, then n� =(ni) i=1, ..., d , n1= } } } =nk=&+1,
nk+1= } } } =nd=&.

We now consider the following ``canonical'' basis for the vector space of
vector polynomials of size q

1 0 x x2

0 0 0 } } }

h0=\0+ , ..., hq&1=\0+ , hq=\0+ , ..., h2q=\ 0 + , ... .

b b b b
0 1 0 0

For n=&q+k, k<q, n�0, hn has 0 for its components except for the
component (k+1) which is x&.

Any linear combination of h0 , ..., hn is said to be of order less than or
equal to n. A vector polynomial, c0h0+ } } } +cn hn , satisfying cn{0 will be
called of maximum order; this is the analog of having maximum degree in
the scalar case.

So for all n�0, n defines a regular multi-index (n1 , ..., np), and H (n) will
denote a vector polynomial of order n which satisfies

H (n)=c0h0+ } } } +cnhn , cn{0

{R(n)=FH (n)&K (n)=O(1�zn� +1)=O(1�zn1+1), ..., O(1�znp+1))t (3)

The order of approximation is maximum.

The assumption that the approximation is maximum means that R(n)=
O(1�zn� +1), and if n$=n+1, then R(n){O(1�zn� $+1). This was already the
sense given in the case of vector approximation ([12]). The assumption
that the order of approximation is maximum limits the study to the classi-
cal non-degenerate or ``normal'' case.

To a vector polynomial H=(H1 , ..., Hq) one can associate, as in [1] or
in [6], the scalar polynomial

p(x)= :
q

i=1

xi&1Hi (xq).

The degree of p and the order of H play the same role. Conversely if p is
known, xi&1Hi (xq) is formed by the terms of p with powers equal to i&1
(mod q). Recurrence relations for the H 's and the p's are the same.

Let us define the matrix moments f &=( f &
k, j)k=1, ..., p, j=1, ..., q , then

F(z)= :
�

&=0

f &

z&+1.
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The infinite generalized Hankel matrix can be considered in block form,
or in standard scalar form (which defines the complex constants
hi, j , i�0, j�0)

f 0 f 1 f 2 } } } h0, 0 h0, 1 h0, 2 } } }

H=\f 1 f 2 f 3 } } } +=\h1, 0 h1, 1 h1,2 } } } + .

b b b b b b

The principal minors of size n_n of the scalar writing on the right hand
side are called the generalized Hankel determinants and are denoted by Hn ;
by convention H0=1. Then, for a regular index (n1 , ..., np), looking for a
solution H (n) of maximum order, expanded in the basis (hk), leads to the
following linear system with respect to the constant ci , i=0, ..., n, cn{0

h0, 0c0+ } } } +h0, n&1cn&1+h0, ncn=0

{ b b (4)

hn&1, 0c0+ } } } +hn&1, n&1 cn&1+hn&1, ncn=0

Definition 2. An index n�0 is said to be normal if Hn{0.

Lemma 1. If n is normal, then (4) has a unique solution, up to the multi-
plication by a constant an , where the leading coefficient is non zero. We get
as solution of (4), a vector polynomial

h0, 0 h0, 1 } } } h0, n

h1, 0 h1, 1 } } } h1, n

H (n)=
an

Hn } b b b } , (5)

hn&1, 0 hn&1, 1 } } } hn&1, n

h0 h1 } } } hn

where the last row of the determinant is composed of vectors.

The proof is a direct consequence of Cramer's formulae.

Definition 3. The matrix F is called weakly perfect if all n are normal.

In the following, we assume weak perfectness of F or, in linear algebra
terminology, strong regularity of the matrix H.
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4. BIORTHOGONALITY WITH RESPECT
TO A BILINEAR FORM

For each k and l, the linear functional 3k, l is defined on the space of
polynomials C[x] by

3k, l (x&)= f &
k, l , &�0.

If H (n) is the vector polynomial (H (n)
1 , ..., H (n)

q )t then relations (1) or (5)
imply

31, 1(H (n)
1 (x)x&)+ } } } +31, q(H (n)

q (x)x&)=0, &=0, ..., n1&1

{ } } } (6)

3p, 1(H (n)
1 (x)x&)+ } } } +3p, q(H (n)

q (x)x&)=0, &=0, ..., p1&1

These relations can be put in matrix form. If Cq[x] (resp. C p[x]) is the
vector space of vector polynomials of size q (resp. of size p), then we define
3 as the bilinear form from C p[x]_Cq[x] to C by: H=(H1 , ..., Hq)t,
E=(E1 , ..., Ep)t

(E, H) 3=E*3H= :
p

k=1

:
q

j=1

3k, j (Hj (x) E� k(x)), (7)

so that 3 can also be considered as the matrix of linear forms (3k, j),
k=1, ..., j=1, ..., q.

Similar to the (hn)n�0 , we define the canonical basis (ek)k�0 of C[x] p

1 0 x x2

0 0 0 b
e0=\ 0 + , ..., ep&1=\0+ , ep=\0+ , ..., e2p=\ 0 + , ... .

} } } b b b
0 1 0 0

As a remark, if e~ n=�n
i=n& p+1 ei , then (6) is the expanded writing of

(e~ m , H (n)) 3=0, m=0, ..., n&1.

which is equivalent to

(em , H (n)) 3=0, m=0, ..., n&1. (8)
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As another remark, (em , hn) 3=hm,n , and so the formula (5) can be
directly deduced from the orthogonality relations (6) or (8). Moreover the
fact that the order of approximation is maximum is given by

(en , H (n)) 3=
an

Hn
Hn+1{0. (9)

3 can also be considered as a linear form from C[x] to Mp, q(3(x&)=
(3k, l (x&))k, l), and in that sense it follows formally as in the scalar case
([2]) (in the notation the index x means that 3 acts on the variable x)

F(z)=3x \ 1
z&x+ .

From the beginning the conjugate transposed problem of (2) can also be
considered for F*.

If F is weakly perfect, then F* is also weakly perfect because its Hankel
matrix is H*. Then denote the solution of the transposed problem S (n)=
F*E (n)&M (n), n�0, and let :n be normalizing constants for E (n), then

(hm , E (n)) 3*=(E (n), hm)*3={0
:nH� n+1�H� n

if m<n,
if n=m.

(10)

From (8), (9), (10), we obtain sequences of biorthogonal polynomials
([4])

Lemma 2. The sequences (H (n))n�0 and (E (n))n�0 are biorthogonal
sequences with respect to the bilinear form 3

\n, m�0 (E (m), H (n)) 3={
0 if n{m,

(11)
an:� n

Hn+1

Hn
if n=m.

5. RECURRENCE RELATIONS

The previous non zero constants an and :n are the leading coefficient of
respectively, H (n) and E (n) (and may be changed in order to normalize the
vector polynomials in one way or another)

H (n)=anhn+ } } } , E (n)=:n en+ } } } .
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Theorem 1. There exists a unique set of complex coefficients a (m)
n , m=

&p, ..., q, n�0, n+m�0 such that the sequence of vector polynomials
(H (k))k is the unique solution of the recurrence relation

a (q)
n H (n+q)+ } } } +a (1)

n H (n+1)+a (0)
n H (n)

+a (&1)
n H (n&1)+ } } } +a (&p)

n H (n& p)=xH (n) (12)

with the initial conditions

H (&p)= } } } =H (&1)=0

H ( j )=
aj

Hj }
h0, 0

h0,0

h0

} } }
} } }
} } }
} } }

h0, j

h0, j

hj
} , j=0, ..., q&1

and the coefficients are given by the solution of the system (14). In particular

a (q)
n =

an

an+q
, n�0

(13)

a (&p)
n+ p=

an+ p

an

Hn+ p+1

Hn+ p

Hn

Hn+1

, n�0

Proof. The required recurrence relation is written in the following form

a (q)
n H (n+q)=&a (q&1)

n H (n+q&1)& } } } &a (1)
n H (n+1)+(x&a (0)

n ) H (n)

&a (&1)
n H (n&1)& } } } &a (&p)

n H (n& p).

Because xhk=hk+q , the vector polynomial on the right hand side is of
order n+q, so identifying the leading coefficient gives the expression for
a(q)

n , n�0. Now H (n+q) satisfies the orthogonality relations

(ek , H (n+q)) 3=0, k=0, ..., n+q&1

and the right hand side of the relation is orthogonal to (ek , k=0, ...,
n& p&1), because xek=ek+ p . Let us develop this orthogonality

{
a (&p)

n (en& p , H (n& p)) 3=(en& p , xH (n)) 3

a (&p)
n (en& p+1 , H n& p))

3+a (&p+1)
n (en& p+1 , H (n& p+1)) 3

=(en& p+1, xH (n)) 3
(14)b

a (&p)
n (eb+q+1 , H (n& p)) 3+ } } } +a (q&1)

n (en+q&1 , H (n+q&1)) 3

=(en+q&1, xH (n)) 3 .
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We get a system of p+q linear equations with p+q unknowns. The matrix
of the system is triangular and the diagonal terms are (ek , Hk) 3 ,
k=n& p, ..., b+q&1, which are nonzero, and thus there exists a unique
solution. In particular a (&p)

n can be given from the first equation

a (&p)
n =

(en& p , xH (n)) 3

(en& p , H (n& p))3
=

(en , H (n)) 3

(en& p , H (n& p)) 3
, (en , H (n)) 3=an

Hn+1

Hn

from which the formulas in (13) are obtained.
The recurrence relation (12) can be written in matrix form as

AH=xH, (15)

where H is the infinite column vector (H (0), H (1), ...)t (each term being a
vector, H could be written as a scalar matrix (�_q)) and A a scalar
infinite band matrix with p+q+1 diagonals

A=\
a (0)

0 } } } } } } a (q)
0 0 0

+ .

b a (0)
1 } } } } } } a (q)

1 0
b . . .

. . .
a (&p)

p } } } } } }
0 a (&p)

p+1 } } } } } }
0 0

. . .

Equation (15) means that A is the matrix of the operator multiplying the
variable x in the set Cq[x] in the basis (H (n))n�0.

If the solution of the dual problem (E (n))n�0 is considered, then in this
basis, the system (14) is a diagonal one. If moreover the E (n) are nor-
malized, such that

(E (n), H (n))3=1, n�0,

then the sequences (H (n))n�0 and (E (n))n�0 are biorthonormal, and the a (k)
n

are defined by

a (k)
n =(E (n+k), xH (n)) 3 .

The matrix of the same operator in C p[x] is, in the basis (E (n))n�0 , given
by A*. This means that the infinite column E=(E (n))n�0 satisfies the
recurrence relations

A*E=xE.
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In explicit form, the (E (n))n�0 satisfy (:n being the leading coefficient of
E (n) in basis (ek))

a� (&p)
n+ p E (n+ p)+ } } } +a� (&1)

n+1 E (n+1)+a� (0)
n E (n)

+a� (1)
n&1E (n&1)+ } } } +a� (q)

n&qE n&q=xE (n) (16)

with the initial conditions

E (&q)= } } } =E (&1)=0

h0,0 } } } h0, k&1 e0

E (k)=
:k

Hk } b } , k=0, ..., p&1

hk, 0 } } } hk, k&1 ek

Of course M (n) and S (n) (S (n)=F*E (n)&M (n)) satisfy the same recurrence
relation with different initial conditions.

Lemma 3. If the leading coefficients of H (n) and E (n) are respectively an ,
and :n defined by

an=\ Hn

Hn+1+
p�p+q

, :� n=\ Hn

Hn+1+
q�p+q

,

then

(a (q)
n } } } a (q)

n+ p&1)q=(a (&p)
n+ p } } } a (&p)

n+ p+q&1) p

(the q and p exterior to the parentheses are powers, those interior to the
parentheses are indices, as before).

Proof. We have

(E (n), H (n)) 3=�:nen ,
an

Hn }
h0, 0

hn&1, 0

h0

} } }
b

} } }
} } }

h0, n

hn&1, n

hn
}�

3

=an :� n
Hn+1

Hn
=1.

(17)

Let us define Cn=(Hn�Hn+1)1�( p+q), an=C p
n , :� n=C q

n , then from (13)

(a (q)
n } } } a (q)

n+ & p&1)q=_Hn Hn+ p+q

Hn+ pHn+q&
pq�( p+q)

.
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Similarly with the a (&p)
k , it follows

(a (&p)
n+ p } } } a (&p)

n+ p+q&1) p=_Hn+q Hn+ p

HnHn+ p+q&
p2�( p+q)

_HnHn+ p+q

Hn+ pHn+q&
p

=_HnHn+ p+q

Hn+ pHn+q&
pq�( p+q)

,

which ends the proof.

6. MATRIX HERMITE�PADE� APPROXIMANTS

From the solution of (2), it is possible to construct the matrices of
dimension respectively p_q, q_q, p_q

Rn=(R(n), R (n+1), ..., R(n+q&1))

Qn=(H (n), H (n+1), ..., H (n+q&1))

Pn=(K (n), K (n+1), ..., K (n+q&1))

with which (2) can be rewritten as

Rn=FQn&Pn=O(1�zn)

where O(1�zn) is a matrix of terms O(1�zk), where the powers of a column
or of a row are regular multi-indices (decreasing in the columns and
increasing in the rows), and so PnQ&1

n is a ``matrix Hermite�Pade� approxi-
mant'' of F. The classical cases are exactly recovered, i.e., the scalar case if
p=q=1, the Hermite�Pade� approximation of the first or the second kind
if q=1 (vector case [12]) or p=1 (which follows from Mahler's connec-
tion between the first and second type of approximation [9]).

7. SHOHAT�FAVARD THEOREM

The orthogonality implies a recurrence relation satisfied by the vector
polynomials H (n). The Shohat�Favard theorem is the converse of this
property. The result for orthogonal polynomials can be put in two forms.
The first one involves only the ``right'' polynomials H (n), and is written
taking care only of the zero conditions of orthogonality. The theorem is as
follows
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Theorem 2. If the sequence of vector polynomials H (n)=(H (n)
1 , ..., H (n)

q )t

is defined by

xH (n)= :
q

k= &p

a (k)
n H (n+k), a (q)

n {0, n�0,

with the initial conditions H (&k)=0, k>0, H (k), k=0, ..., q&1 arbitrary, of
maximum order k, then there exists a p_q matrix 3 of linear functionals
3i, j , i=1, ..., p, j=1, ..., q such that if n defines the regular multi-index
(n1 , ..., np)

:
q

j=1

3i, j (H (n)
j x&)=0, &=0, ..., ni&1, i=1, ..., p.

Proof. The first step of the proof is to determine 3 by its moments 3k
i, j ,

i=1, ..., p, j=1, ..., q, k�0 using the orthogonality conditions for &=0,
which gives

:
q

j=1

3i, j (H (n)
j )=0, i=1, ..., p, n�i.

The functionals are defined row by row. We define 31, 1(1)=30
1, 1{0, then

for n�1 the first equation defines successively 30
1, 2 , ..., 30

1, q , 31
1, 1 , ... in

terms of 30
1, 1 , so all the moments 3k

1, j are defined for j=1, ..., q and all k
positive from the first one 30

1, 1 (if this one is zero, then all the forms 31, j ,
j=1, ..., q are identically zero). Similarly the same equation written for the
second row, begins at index n=2 and so all the moments 3k

2, j are defined
from the two first ones 30

2, 1 , 30
2, 2 .

For the row i (i�1), all the moments are obtained from the first i ones,
i.e., if i=?q+\, 0�\<q, 30

i, 1 , ..., 30
i, q , 31

i, 1 , ..., 3?
i, \ . The space of solu-

tions 3 is a vector space of dimension (p( p+1))�2 as in the vector case
of dimension p ([12], where unfortunately p ! was written for the sum
1+ } } } + p).

The second step of the proof is, 3 being defined by its moments, to verify
the orthogonality relations. By definition

xH (n)= :
q

k=&p

a (k)
n H (n+k),

so it follows that

:
q

j=1

3i, j (xH (n)
j )= :

q

k= &p

a (k)
n \ :

q

j=1

3i, j (H (n+k)
j )+ ,
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and all the terms of the sum on the right hand side are zero if n�i+ p,
which is the right condition to be satisfied. All the orthogonality conditions
are similarly satisfied.

A second form of the theorem can be given in a bilinear setting. The
orthogonality conditions are completely written

(em , H (n)) 3=0, m=0, ..., n&1, (en , H (n)) 3{0,

or equivalently, the E (m) being of maximum order,

(E (m), H (n)) 3 {=0 if m{n,
{0 if m=n.

The bilinear form of the theorem is the following

Theorem 3. If H (n)=(H (n)
1 , ..., H (n)

q )t and E (m)=(E (m)
1 , ..., E (m)

p )t are
sequences of vector polynomials of size q and p respectively, the first q
(resp. p) of them have maximum order, defined by the recurrence relations

xH (n)= :
q

k=&p

a (k)
n H (n+k), H (&k)=0, k>0, H (0), ..., H (q&1) fixed

xE (n)= :
p

k=&q

a� (&k)
n+k E (n+k), E (&k)=0, k>0, E (0), ..., E ( p&1) fixed,

where a (q)
n {0 and a (&p)

n {0 for all n�0, then there exists a unique p_q
matrix 3=(3i, j) i=1, ..., p; j=1, ...,q of linear functionals such that

(E (m), H (n)) 3=$n, m n, m�0.

Proof. Let us look at the values (E (n), H (n)) 3 . We have E (n)=
:n en+ } } } , as previously denoted, so if n=&p+&0 , &0< p, then

(E (n), H (n)) 3=:� n(en , H (n)) 3

=:� n(en& p , xH (n)) 3

=:� n a (&p)
n (en& p , H (n& p)) 3

=:� n a (&p)
n a (&p)

n& p } } } a (&p)
n&(&&1) p(e&0

, H (&0)) 3 .
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The :n can be expressed through the coefficients of the recurrence relation,
identifying the leading coefficient

xE (n)= :
p

k=&q

a� (&k)
n+k E (n+k)

:n=a� (&p)
n+ p :n+ p

:&0
=a� (&p)

n&(&&1) p } } } a� (&p)
n :n

so finally

(E (n), H (n)) 3=(E (&0), H (&0)) 3 .

If the initial conditions ensure (E (n), H (n)) 3=1 for n=0, ..., p&1, then
this relation is satisfied for all n.

The initial conditions are known from the p( p+1)�2 values (ei , hj) 3 ,
0� j�i� p&1, which is equivalent to knowing the p( p+1)�2 values
(E (i ), H ( j )) 3 , 0� j�i� p&1. Finally to know that these last ones are the
Kronecker symbol, defines a unique matrix of linear forms 3 such that

\m, n�0, (E (m), H (n)) 3=$n, m . (18)

8. CHRISTOFFEL�DARBOUX FORMULA

In the scalar case, for a family of polynomials (Pk)k�0 orthogonal with
respect to a linear functional c, where Pk(x)=tk xk+ } } } and hk=c(P2

k)
the Christoffel�Darboux formula is as follows

:
n

k=0

1
hk

Pk(x) .Pk( y)=
tn

tn+1hn

Pn+1(x) Pn( y)&Pn+1( y) Pn(x)
x& y

The left hand side of this formula is to be considered as a reproducing
kernel

Kn(x, y)= :
n

k=0

1
hk

Pk(x) .Pk( y)

c(Kn(x, y) Pk( y))=Pk(x), k=0, ..., n.

The generalization of the Christoffel�Darboux formula needs the definition
of a kind of reproducing kernel ([1]) for the vector polynomials H (n) and
E (n) which would be supposed to satisfy (18). We consider the following
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product, for vectors respectively of H # Cq and E # C p as the q_p matrix,
denoted HE� (to avoid too many indices)

H1

HE� =\ b + (E� 1 } } } E� p)=(HiE� j) i=1, ...,q, j=1, ..., p

Hq

and then define Kn(x, y) as the q_p matrix

Kn(x, y)= :
n

m=0

H (m)(x) E� (m)( y). (19)

Then

{
Kn(x, y) 3H (k)( y)= :

n

m=0

H (m)(x)(E (m)( y), H (k)( y)) 3=H (k)(x)

k=0, ..., n
(Kn(x, y))* 3*E (m)(x)=E (m)( y) m=0, ..., n

To obtain a kind of Christoffel�Darboux formula, we now study

(x& y) Kn(x, y)

= :
n

m=0

(xH (m)(x) E� (m)( y)&H (m)(x) yE� (m)( y))

a (0)
0 } } } a (&p)

p 0
b . . .

. . .
a (q)

0
. . . a (&p)

n

=(H (0)(x), ..., H (n+q)(x))\ 0
. . .

. . . +\E� (0)( y)
b

E� (n)( y)+. . . a (0)
n. . .

a (q)
n

a (0)
0 } } } a (&p)

p 0

b . . .
. . .

&(H (0)(x), ..., H (n)(x))\a (q)
0

. . .
. . . +0

. . .
. . .

. . .

a (q)
n&q } } } a (0)

n } } } a (&p)
n+ p

E� (0)( y)

_\ b + , (20)

E� (n+ p)( y)
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and finally, we get for n�q&1 and n� p&1 (the H (n) are taken in x and
the E (n) in y)

(x& y) Kn(x, y)

=(H (n& p+1), ..., H (n+q)) \
&a(&p)

n+1

+
Op, q b . . .

&a (&1)
n+1 } } } &a (&p)

n+p

a(q)
n&q+1 } } } a (1)

n. . . b Oq, p

a (q)
n+q

E� (n&q+1)

_\ b + . (21)

E� (n+ p)

This formula (21) is the generalized Christoffel�Darboux identity. It is
valid for n�0, the polynomials of negative index being zero. In the scalar
case where p=q=1 the formula becomes

(x& y) :
n

m=0

H (m)(x) E� (m)( y)

=(H (n)(x), H (n+1)(x)) \ 0
a (1)

n

&a (&1)
n+1

0 +\ E� (n)( y)
E� (n+1)( y)+

and the usual formula is recovered if moreover the matrix A is real and
symmetric.

In the scalar case, Brezinski ([3]) has proved that the Christoffel�
Darboux identity is equivalent to the three-term recurrence formula. A
similar result can be proved here. Let two families of polynomials be given,
respectively in Cq and C p satisfying, for all n, the generalized Christoffel�
Darboux formula (21) for given constants a ( j )

i .
We must first remark that the matrix A of the previous part is com-

pletely known except the main diagonal (a (0)
n )n�0 . So we will consider it

with arbitrary a (0)
n (we have put them equal to zero for simplicity, but these

values would disappear anyway in the computation). The formula (20) is
recovered and we write it in block form: the matrix in the middle is part
of At, so Bn contains the n first rows and columns of At, #n the first n
columns and the rows from index n+1 to n+q and similarly for the other
terms in such a way that the multiplications are possible (the H (n) are
taken in x and the E (n) in y)
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(x& y) Kn(x, y)

=((H (0) } } } H (n&1)), (H (n) } } } H (n+q&1)), H (n+q))

_\
Bn&1

#n&1

O1,n&1

cn
#$n

a (q)
n
+\\

E� (0)

b
E� (n&1)++E� (n)

&((H (0) } } } H (n&1)), H (n)) \Bn&1

ln

;n&1

;$n

On&1, 1

a (&p)
n+ p +\ \

E� (0)

b
E� (n&1)+ + .

\
E� (n)

b
E� (n+ p&1)+

E� (n+ p)

From this last one, (x& y) H (n)(x) E� (n)( y) is obtained as

(x& y) H (n)(x) .E� (n)( y)

=((H (0) } } } H (n&1)) cn+(H (n) } } } H (n+q&1)) #$n+a (q)
n H (n+q)) E� (n)

&H (n)(ln(E� (0) } } } E� (n&1))t+;$n(E� (n) } } } E� (n+ p&1))t+a (&p)
n+ p E� (n+ p))

Separating the terms in x and the terms in y, it follows that

\xH (n)(x)& :
q

k= &p

a (k)
n H (n+k)(x)+ E� (n)( y)

=H (n)(x) \yE� (n)( y)& :
p

k= &q

a (&k)
n+k E� (n+k)( y)+ .

This equality can be written more compactly as M(x) E� (n)( y)=
H (n)(x) N� ( y), which is equivalent, from the definition of the product to the
equality for the components

Mi (x) E� (n)
j ( y)=H (n)

i (x) N� j ( y), i=1, ..., q, j=1, ..., p

so there exists a constant *n independent of i, j, x, y such that

M(x)=*nH (n)(x), N� ( y)=*nE� (n)( y)
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which is the same as the required recurrence relations with now a (0)
n =*n

{
xH (n)(x)= :

q

k=&p

a (k)
n H (n+k)(x)

yE (n)( y)= :
p

k=&q

a� (&k)
n+k E (n+k)( y)

From the previous generalization of the Shohat-Favard theorem, it follows
that there exists a matrix of linear forms 3 such that

(E (n), H (m)) 3=$n, m ,

this leads to the expression of a (0)
n , the only coefficient not given as data

a (0)
n =(E (n), xH (n)) 3

and this formula is in fact true for all the coefficients because of the link
between a (k)

n and 3

a(k)
n =(E (n+k), xH (n)) 3 , k=&p, ..., q.

9. MATRIX POLYNOMIALS

In [6] orthogonal matrix polynomials, i.e., polynomials with square
matrix coefficients or equivalently square matrices of polynomials are
considered and their recurrence relations studied. For the sake of sim-
plicity, we suppose in the sequel that p�q, in the other case, we would
have to consider the polynomials E (n) of size p. Let us rewrite in parallel
the recurrence relations satisfied by the vector polynomials H (n) for d con-
secutive indices

a (&p)
n

b . . . a&p)
n+d&1

a (0)
n } } } a (&q)

n+d&1

x(H (n), ..., H (n+d&1))=(H (n& p), ..., H (n+d&1+q))\ b . . . +a (q)
n } } } a (0)

n+d&1. . . b
a (q)

n+d&1
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If d is taken as the greatest common divisor (g.c.d.) of p and q, then we set
p=:d and q=;d. The matrix on the right hand side can be put in blocks
of size d_d and becomes

x(H (n), ..., H (n+d&1))= :
;

k= &:

(H (n+kd), ... H (n+kd+d&1))1 k

where the first and the last matrices 1 &: and 1 ; are triangular and
invertible.

Now we define the matrix polynomial of size q_d by QN=(H (Nd), ...,
H (Nd+d&1)) and the preceding recurrence relation for the H (n) is equivalent
to the relation with square matrix coefficients 1 of size d_d

xQN=� ;
k= &: QN+k .1 k

N ,

{1 &:
N , 1 ;

N resp. lower and upper triangular, invertible

:, ; # N relatively prime

If q=1 the relation is the relation characterizing the vector orthogonality
of dimension p, if p=q, a three term recurrence relation is obtained as in
[6] where moreover 3=3* or A=A* and so 1 &:

N =(1 ;
N+1)*.

Conversely, suppose a recurrence relation with square matrix coefficients
d_d is given for matrix polynomials of size q_d

xQN= :
;

k=&:

QN+k .1 k
N , N�0,

with the first and the last matrices 1 &:
N and 1 ;

N invertible. By changing d
to d $=$d ($ is the g.c.d. of :, ;), and QN to (QN , ..., QN+$&1), the
recurrence relation becomes a recurrence relation of the same kind where
the sum is from &:$=&:�$ to ;$=;�$ which are now relatively prime.

With the method explained in [6], it can be assumed without loss of
generality that one of the matrices 1 &:

N , 1 ;
N is triangular, but without the

assumption A=A*, the other one is not triangular.
Let us suppose that 1 &:

N is lower triangular for all N. The columns of
QN are denoted by H (Nd+i ), for i between 0 and d&1, so the sequence of
vectors of size q(H (n))n is defined and the recurrence for the matrix polyno-
mials give the following recurrence relation for the H (n)

xH (Nd+i )=a (&p)
Nd+i H

(Nd+i& p)+ } } } +a (q)
Nd+iH

(Nd+i+q)

+ } } } +a (q+d&1&i )
Nd+i H (Nd+q+d&1).

If the initial conditions are of maximum order, then it is clear that all the
vector polynomials are of maximum order only if the matrices 1 ;

N are
triangular.
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It is now natural to define ``matrix polynomials of maximum order'' as
matrices of polynomials where all the columns are of maximum order,
which means that, expanded as a polynomial with matrix coefficients, QN

has as coefficient of xN a triangular invertible matrix.
If the study of orthogonal matrix polynomials is limited to matrix

polynomials of maximum order, this study is completely done through
the study of orthogonal vector polynomials defined very classically by
orthogonality with respect to a bilinear form, i.e., by a matrix of linear
forms defining a formal inner product (formal because it is not defined by
a symmetric, positive definite matrix of forms) and characterized either by
the recurrence formula, or by the Christoffel�Darboux identity.
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